
Managing Complexity in Scientific Programs in Fortran95

Viktor K. Decyk, UCLA

Abstract

The complexity of scientific software is increasing as
computer power is rising. Such complexity becomes
unmanageable without the help of more sophisticated
programming language features. This talk will discuss
some of the features of Fortran95 which are useful for
managing complexity, largely by using ideas from object-
oriented programming. Examples will be given from the
UCLA Parallel PIC Framework (UPIC) and the Summit
Framework.

Outline:

Some new features in Fortran95:

 Modules, Array Objects, Derived Types

Object-Oriented Concepts in Fortran95

 Information Hiding and Data Encapsulation
 Abstract Datatypes, Classes and Objects
 Inheritance
 Dynamic Dispatch or Run-Time Polymorphism

UPIC Framework

 Modules

 A module is a new program unit for grouping together
subroutines, data, etc. We will use this construct to build
classes later.

 module my_module
 real, parameter :: pi = 3.14159 ! data goes here
 contains ! procedures go here
 subroutine roots(a,b,state)
 implicit none
 real, intent(out) :: a
 real, intent(in) :: b
 integer, intent(inout) :: state
 ... ! contents of procedure go here
 ! Something new: pi is available here
 end subroutine roots
 end module my_module

 program my_program
 use my_module ! make information in module available
 ! pi and roots are now known here
 real :: x = 1.0, y = 2.0, z = 3.0
 integer :: s = 1
 ! the arguments will be checked
 call roots(x,y,z) ! interface block no longer needed
 ! z is still the wrong type.
 end program

Modules can be compiled separately. Modules are
extremely useful for managing complexity.

 Array Objects

 Arrays in Fortran90 are actually self-contained objects.
They contain hidden information about their sizes and
shapes. As a result of this extra information, one does not
have to explicitly declare array dimensions in subroutines.

 subroutine dummy(f)
 real, dimension(:) :: f ! assumed shape array

One can query the size of an array as follows:

 integer :: i
 i = size(f)

One can also declare temporary arrays inside procedures

 subroutine dummy(f)
 real, dimension(0:) :: f ! lower bound of f is 0
 real, dimension(size(f)) :: temp ! automatic array

However, you have to be more careful when using
Fortran90 arrays in procedures. Specifically, the
procedures using such arrays must either have an explicit
interface block whenever used or be in a module. This is
because the compiler needs to know whether to pass the
address of the array (as in Fortran77), or a descriptor with
the hidden information (as in Fortran90). If you put all
your procedures in modules, then you never have to
worry.

 Derived Types

Derived types are a named group of other types which
can be created by a user to organize information.

 type ordered_real
 real :: value
 integer :: key
 end type

This type contains one real value and one integer. Such a
type might be used to keep track of the order of a set of
reals.

Derived types are similar to structs or records in other
languages, and are a very important concept in modern
programming.

To create a variable of this type:

 type (ordered_real) :: a, b, c
 a = ordered_real(1.,1) ! structure constructor

One can also access components of this type as follows:

 b%value = 2.; b%key = 5

And copy all the elements

 c = a ! assignment operator (=) is defined
 ! other operators (+,*) not defined

 Why are derived types so important? Because they
allow us to treat variables more abstractly.

Suppose, for example, we have a Fortran77 graphics
subroutine with the following interface:

 subroutine DISPR(f,label,scale,clip,marker,nx,nxv,ngs)
 character(len=80) :: label
 integer :: scale, clip, marker, nx, nxv, ngs
 real, dimension(nxv,ngs) :: f
 end subroutine

Four of these arguments are used to describe plots. Since
they will always be used together, we can define a type so
we can always refer to them as a unit:

 type graf1d
 character(len=80) :: label
 integer :: scale, clip, marker
 end type graf1d

Then instead of calling the function DISPR, we can create a
new function dispr_f90:

 subroutine dispr_f90(f,nx,graf_params)
 type (graf1d) :: graf_params
 real, dimension(:,:) :: f ! nxv, ngs not needed anymore
 call DISPR(f,grparams%label,grparams%scale,
 &grparams%clip,grparams%marker,nx,size(f,1),size(f,2))

which is much easier to use. We can also change the
graf1d type without changing how dispr_f90 is called.

 Introduction to Object-Oriented Concepts in Fortran95

 Object-Oriented Programming (OOP) is a design
philosophy for writing complex software. Its main tool is
the abstract data type, which allows one to program in
terms of higher level concepts than just numbers and
arrays of numbers. In their mathematics, physicists are
quite familiar with the power of abstraction, e.g., we
express physics equations using the curl operator, rather
than writing out all the components. But we have not
used such abstractions very much in our programming.

 OOP includes a number of concepts which have
proved useful in programming large projects. These are:

1. Information Hiding and Data Encapsulation

2. Function Overloading or Static Polymorphism

3. Abstract Datatypes, Classes and Objects

4. Inheritance

5. Dynamic Dispatch or Run-Time Polymorphism

Information Hiding and Data Encapsulation

 Perhaps the most important concept is that of
information hiding. This means that information which is
required in only one procedure should not be made
known to other procedures which do not need this
information. Like the CIA, procedures should be informed
of data only on a “need to know” basis. This philosophy
simplifies programming, because there is less detail one
must be concerned about in programming and less
opportunities to make mistakes.

 One way to achieve this is to encapsulate the data
inside a derived type, and then allow only certain
procedures (sometime called methods) to modify the data.
One is prevented from modifying the data by any other
means not provided by the programmer.

 Such encapsulation permits separation of concerns.
One can separately write and debug pieces of a large
program, without worrying about a new procedure
causing inadvertent damage to an older procedure.
Writing complex program becomes an order N problem,
rather than an order N2 problem.

Let’s look at an example of what this means. Consider the
following interface to a legacy Fortran77 fft procedure:

 subroutine fft1r(f,t,isign,mixup,sct,indx,nx,nxh)
 integer isign, indx, nx, nxh, mixup(nxh)
 real f(nx)
 complex sct(nxh), t(nxh)
 ... rest of procedure goes here

In this procedure, f is the input (and output) data, t is a
temporary work array, mixup is a bit reversed table, sct is
a sine/cosine table, indx is the power of 2 defining the
length of the transpose, nx is the size of the f, and nxh is
size of the remaining data, and isign is either the direction
of the transform (-1,1) or a request to initialize the tables
(0).

 To use this fft, one must get all of this data correct, there
are many opportunities for mistakes. However, most of
this data is relevant only internal details of performing the
fft. The programmer only wants to worry about the data f
and the direction of the transpose. Life would be much
simpler if one could merely call

 call fft1(f,isign)

without having to worry about the other details.

 One of the reason all these details are exposed is that
Fortran77 did not allow dynamic arrays. By using
automatic and allocatable arrays, one can easily hide the
scratch array t and the tables mixup and sct inside a
wrapper function:

 subroutine fft1(f,indx,isign)
 integer :: indx, isign, nx, nxh
 real, dimension(:) :: f
 complex, dimension(size(f)/2) :: t
 integer, dimension(:), allocatable, save :: mixup
 complex, dimension(:), allocatable, save :: sct
 nx = size(f); nxh = nx/2
 if (isign==0) allocate(mixup(nxh),sct(nxh))
 call fft1r(f,t,isign,mixup,sct,indx,nx,nxh)

Thus the programmer does not have to worry about these
things anymore and there is less opportunity for error.

 We have successfully hidden from the programmer
details about the fft that are not necessary to know to use
the fft. Now the interface is much simpler and less error
prone:

 call fft1(f,indx,isign)

 If one gets the interface down to its bare essentials,
then it is unlikely to change in the future, even if the
internal details of the procedure do change. For example,
suppose on a given computer, there was an optimized fft
which was much faster than the legacy fft1r. One could
now replace the call to fft1r inside the wrapper function,
and the users of the wrapper function would not have to
change anything in their code.

 subroutine fft1(f,indx,isign)
 ...
 call faster_fft1r(f,......) ! different internal arguments
 end subroutine

 call fft1(f,indx,isign) ! Note the call does not change

 Thus encapsulation allows one to change the
implementation details of a procedure without impacting
the rest of the program. This also allows concurrent
development: different programmers can be modifying
different pieces of a large program, without worrying
about getting in each other’s way, so long as the interfaces
do not change.

Abstract Datatypes, Classes and Objects

 An abstract data type or class encapsulates a user
defined data type along with the operations that one can
perform on that type.

 The main value of classes is to encapsulate and hide
the complex details of a set of related operations while
presenting a simplified set of functions for the programmer
to use. This encapsulation prevents inadvertent
modification of internal data and also allows the
implementation details to be changed without impacting
the usage of the class.

 As a result, it is much easier for different programmers
to implement different classes without getting in each
others way, and it (usually) means that once a class is
debugged, one does not have to worry about it further
when debugging other new code. As a result, more
complex computational projects can be attempted.

Here is a basic electrostatic particle class

It contains a type:

 module species2d_class
 type species2d
 real :: qm, qbm, dt
 integer :: ipbc, nbmax, np, npp
 integer :: popt, dopt, sortime
 real, dimension(:,:,:), pointer :: part
 end type species2d

qm = charge on particle, in units of e
qbm = particle charge/mass ratio
dt = time interval between successive calculations
ipbc = particle boundary flag
nbmax = buffer size for passing particles between procs
np = total number of particles
npp = number of particles in this processor
popt = particle optimization flag
dopt = charge deposit optimization flag
sortime = number of time steps between particle sorting
part(:,:,m) = particle coordinates in this processor

And it contains functions which operate on that type:

Constructors and destructors:

 subroutine new_species2d(this,qm,qbm,ipbc,popt,dopt,
sortime)

 subroutine del_species2d(this)

Initialization functions:

 subroutine init_species(this,nspace,fdist)

General functions:

 subroutine qdeposit(this,qfield)
! deposits charge on a grid

 subroutine push(this,efield,ek);
! updates the particle co-ordinates

 subroutine pmove(this,nspace)
! moves particles into appropriate processor

 subroutine sortp(this,nspace)
! sorts particles by y grid for cache optimization

 subroutine wrdata(this,iunit);
! this subroutine collects distributed particle data part
! and writes it to a file

 subroutine rddata(this,iunit,ierror)
! this subroutine reads particle data from a file and
distributes it

 A variable of this type is called an object. It is declared
as follows:

 type (species2d) :: electrons

The components of a derived type are called the class data
members. The procedures defined in the class are called
class member functions. Generally, they provide the only
means by which one can manipulate species2d objects.

Typical usage:

 type (species2d) :: electrons
 call new_species2d(electrons,qme,qbme,ipbc,sortime,
 popt,dopt,sortime)
 call init_species(electrons,nspace,fdist)
 call push(electrons,efield,electron_ke)
 call qdeposit(electrons,qfield)

 The public interface to a class presents an abstract
type to the outside world. By requiring the outside world
to use only these interfaces, keeping the internal details of
a class private, the internal data cannot be corrupted, and
the implementation of methods can be changed without
impacting others.

Inheritance

 Inheritance is a mechanism to create a hierarchy of
classes in which a parent (or base) class contains the
common properties of the hierarchy and child (or derived)
classes can modify (or specialize) these properties. The
value of inheritance is to avoid duplicating code when
creating classes which are similar to one another.

 In object-oriented languages, inheritance specifically
refers to a data relationship where the child class contains
the data and functions of the parent. This allows the child
to act as a parent for those functions that the child is not
modifying. In other words, an inheritance relationship is
like that of a Russian matrioska doll, where one doll fits
inside another.

 Inheritance is automated in object-oriented languages
because of this special relationship. In Fortran95,
however, inheritance must be manually constructed.

 To see how this works, let us continue with the
particle example. Now suppose we want to create a
special class for relativistic, electromagnetic particles which
contains additional information specific to pushing particles
with electromagnetic fields, namely the speed of light and a
flag for choosing a current deposit method, but the other
information for a particle is the same as before, and we
would like to avoid rewriting that code for the
electromagnetic class.

 There are several ways to achieve this. One way is to
define an rel_em_species2d class to explicitly contain a
speciesd2d object in its class definition:

 module rel_em_species2d_class
 use species2d_class
 type rel_em_species2d
 type (species2d) :: es
 real :: ci
 integer :: djopt
 end type rel_em_species2d

ci = reciprical of velocity of light
djopt = current deposit optimization flag

We also have to define two new methods:

 subroutine push(this,efield,bfield,electron_ke)
 subroutine jdeposit(this,cfield)

We want all the other methods defined to work with
electrostatic particles to also work with the new particles.
In other words, the following functions must also work:

 subroutine qdeposit(this,qfield)
 subroutine pmove(this,nspace)
 subroutine sortp(this,nspace)
 subroutine wrdata(this,iunit);
 subroutine rddata(this,iunit,ierror)

One way is to delegate the work to the parent class, by
writing a one line subroutine for the new class, which
merely calls the original subroutine for the old class:

 subroutine qdeposit(this,qfield)
 type (rel_em_species2d) :: this
 call qdeposit(this%es,qfield)
 end subroutine

In an OO language, these one line subroutines would not
have to be written.

Typical usage:

 type (rel_em_species2d) :: relectrons
 call new_species2d(relectrons,qme,qbme,ipbc,sortime,
 popt,dopt,sortime)
 call init_species(relectrons,nspace,fdist)
 call push(relectrons,efield,bfield,electron_ke)
 call qdeposit(relectrons,qfield)
 call jdeposit(relectrons,cfield)

Dynamic Dispatch or Run-Time Polymorphism

 Run-time polymorphism (also known as dynamic
binding) allows a single object name to refer to any
member of an inheritance hierarchy and permits a
procedure to resolve at run-time which actual object is
being referred to. This is useful because it allows one to
write programs in terms of a single type which would
behave differently depending on the actual type. Object-
oriented languages support this behavior. Fortran95 does
not, with the exception of elemental functions.

 In other words, we would like to be able to write a
subroutine like this:

 subroutine update(this,efield,bfield,ke)
 type (any_kind_of_species) :: this
 call push(this,efield,bfield,ke) ! does the right stuff

which does something like this:

 subroutine update(this,efield,bfield,ke)
 type (any_kind_of_species) :: this
 if (this==species2d) then
 call push(electrons,efield,ke)
 else if (this==rel_em_species2d) then
 call push(electrons,efield,bfield,ke)
 endif
 end subroutine

There are techniques for accomplishing this in Fortran95,
but I do not have time to go into them now.

UPIC Framework

 A framework is a unified environment containing all
the components needed for writing code for a specific
problem domain. Its goal is the rapid construction of new
codes by reuse of trusted modules.

 UPIC Framework designed to help construct Plasma
PIC calculations by student programmers.

 Supports multiple numerical methods, different physics
approximations, different numerical optimizations and
implementations for different hardware.

 Designed to hide the complexity of parallel processing.

 The UPIC Framework has been used to build a
number of new PIC codes:

1. QuickPIC, a quasi-static plasma accelerator code
2. QPIC, a quantum PIC code
3. BEPS, a computational lab for teaching plasma physics
4. HIPASS2, a space physics code
5. an unnamed cosmology code

For further information:

http://exodus.physics.ucla.edu/Fortran95/PSTIResearch
LecSeries1.html

Layered Approach (software stack)

Bottom Layer: optimized Fortran77 kernels.

• Well tested, often with years of use, don’t need to fix it

Lower Layer: common utility functions

• Timing, trace facilities, tracking memory leaks

• Parallel I/O

Middle Layer: helper objects that work with Fortran90
arrays. They describe data, do not contain data

• Fortran90 arrays powerful, popular, well-understood

• Simpler environment for building new high level objects

• Hides parallel processing details

• Implements some polymorphism

• Can be used in other codes and frameworks

Higher Layers: objects with properties

• Objects contain hidden pointers to all structures need to
perform required operation

• Send message to object: “FFT yourself.”

Lower Level Classes in UPIC Framework

Errors class

 This “class” provides support for debugging

Parallel class

 This “class” provides basic support for parallel
processing. Designed for spectral methods with the
number of processors equal to a power of 2.

Perrors class

 This “class” modifies the error class to provide support
for parallel debugging.

Spect2d Class

 This class encapsulates basic information about
simulations which use 2d spectral methods for solutions.

Input2d class

 This “class” defines the input namelist variables and
provides default values for each of them.

Middle Level Classes in UPIC Framework

Ufield2d class

 This class provides support for uniformly partitioned
distributed scalar and vector arrays.

Nfield2d class

 This class provides support for non-uniformly
partitioned distributed scalar and vector arrays.

Fdist2d class

 This middle level class provides functions to describe
distributions of particles.

FFT2d class

 This class provides functions to perform real to complex
2d FFTs for uniformly partitioned scalar or vector data.

Fpois2d class

 This class provides functions to solve Poisson’s equation
in fourier space for scalar or vector data.

Part2d class

 This middle level class contains information about particle
properties and information needed to process particles.

High Level Classes in UPIC Framework

S_field2d class

 This class provides support for scalar fields that have
properties. Examples of such fields include charge density
or potentials. This class encapsulates the information
necessary for the fields to be able to perform various
operations such as solving Poisson’s equation.

V_field2d class

 This class provides support for vector fields that have
properties. Examples of such fields include current
density or electric fields. This class is very similar to the
scalar field class in functionality.

Species2d class

 This class contains particle co-ordinates as well as a
particle helper object which describes properties of a
particle. There are three main methods in the class,
depositing charge and current and pushing particles. The
helper object determines what algorithms are used in each
case.

Plasma2d_class

 This class encapsulates the entire code into one super
class. One merely puts all the initial variables into a type.

Here is the implementation of one of the functions:

 subroutine transp2d(source,f,dest,g)
! this subroutine performs transpose between different layouts
! source, dest = ufield2d descriptors of data
! f = source for transpose
! g = result of transpose
! kstrt = starting data block number, a global variable
 implicit none
 type (ufield2d), intent(in) :: source, dest
 complex, dimension(:,:,:) :: f, g
! local data
 integer :: nx, ny, nxv, nyv, kxp, kyp, kxpd, kypd
 integer :: jblok, kblok
 complex, dimension(dest%nd2p,source%nd2p,size(f,3)) :: s
 complex, dimension(dest%nd2p,source%nd2p,size(g,3)) :: t
 character(len=10), save :: sname = ':transp2d:'
 if (monitor==2) call werrfl(class//sname//' started')
! check for errors
 if (monitor > 0) then
 if ((source%partition /= 1) .or. (dest%partition /= 1)) then
 erstr = ' invalid/non-conforming partition'
 UFIELD2D_ERR = 6; EXCEPTION = EXCEPTION + 1
 call ehandler(EDEFAULT,class//sname//erstr); return
 endif
 if ((source%mshare /= 0) .or. (dest%mshare /= 0)) then
 erstr = ' non-conforming memory sharing'
 UFIELD2D_ERR = 7; EXCEPTION = EXCEPTION + 1
 call ehandler(EDEFAULT,class//sname//erstr); return
 endif
 endif

! obtain transpose arguments
 nxv = size(f,1); nyv = size(g,1)
 kxp = dest%nd2p; kyp = source%nd2p
 kxpd = size(g,2); kypd = size(f,2)
 jblok = dest%n2blok; kblok = source%n2blok
 nx = source%nd1; ny = source%nd2
 if (abs(source%layout - dest%layout)==1) then
! make sure arrays are conforming
 if ((source%nd1 /= dest%nd2) .or. (source%nd2 /= dest%nd1)) &
 &then
 erstr = ' non-conforming array'
 UFIELD2D_ERR = 8; EXCEPTION = EXCEPTION + 1
 call ehandler(EDEFAULT,class//sname//erstr); return
 endif
! perform transpose
 call PTPOSE(f,g,s,t,nx,ny,kstrt,nxv,nyv,kxp,kyp,kxpd,kypd,jb&
 &lok,kblok)
! unsupported transpose
 else
 erstr = ' unsupported transpose'
 UFIELD2D_ERR = 9; EXCEPTION = EXCEPTION + 1
 call ehandler(EDEFAULT,class//sname//erstr); return
 endif
 if (monitor==2) call werrfl(class//sname//' complete')
 end subroutine transp2d

Guard cells Guard cells

Guard cellsGuard cells

Ufield2d Uniformly Partitioned Data

Nfield2d Non-uniformly Partitioned Data

 module plasma2d_class ! Super class

class library for describing high level 2d plasma objects

 type plasma2d
 integer :: idproc, id0, nvp, mshare, nloop, itime
 integer :: ou, ov, or, os
 type (spect2d) :: space
 type (s_field2d) :: q, qi, den, pot
 type (v_field2d) :: fxy, bxy, cu, exyz, bxyz
 type (fdist2d) :: ebackg, ebeam, elects
 type (part2d) :: epart
 type (species2d) :: electrons
 real, dimension(:,:), pointer :: wt
 real, dimension(:,:,:), pointer :: fv
 end type plasma2d

idproc = processor id in lgrp communicator
id0 = processor id in MPI_COMM_WORLD
nvp = number of real or virtual processors
mshare = (0,1) = (no,yes) architecture is shared memory
nloop = number of time steps in simulation
itime = current time step
ou, ov, or, os = output fortran unit numbers
space= helper objects for 2d spectral fields
q, qi, den, pot = scalar field objects
fxy, bxy, cu, exyz, bxyz = vector field objects
ebackg, ebeam, elects = objects for distribution functions
epart = helper object for electrons
electrons = electron object
wt = time history array for energies
fv = velocity distribution

This high level object contains all the variables describing a
plasma, including high level fields and species.

There is one main method in the class, advancing the
plasma state one time step.

Constructors:

 subroutine new_plasma2d(this)
! this subroutine creates a high level 2d plasma object

Destructor:

 subroutine del_plasma2d(this)
! delete a high level 2d plasma object

General functions:

 function update_plasma2d(this) result(done)
! this subroutine updates a 2d plasma object one time step
! done = current time step itime > 0, if no error
! otherwise = (-1,-2), indicating simulation is
(complete,aborted)

 subroutine printout_plasma2d(this)
! this subroutine prints out the data members of a
plasma2d object

Fortran90 Main Code:

 program simulation2d
!
 use plasma2d_class
 implicit none
 integer :: done = 0
 type (plasma2d) :: plasma
!
 call new_plasma2d(plasma)
 do while (done >= 0)
 done = update_plasma(plasma)
! one could process additonal events here
 enddo
 call del_plasma2d(plasma)
!
 end program simulation2d

C Main program:

#include <stdlib.h>
#include <stdio.h>

/* prototypes for internal procedures */

void NEW_2DPLASMA(int *plasma_id);
void DEL_2DPLASMA(int *plasma_id);
int UPDATE_2DPLASMA(int *plasma_id);

int main(int argc, char *argv[])
{
 int done = 0, plasma;

 NEW_2DPLASMA(&plasma);
 while (done > 0) {
 done = UPDATE_2DPLASMA(&plasma);
/* one could process additonal events here */
 }
 DEL_2DPLASMA(&plasma);
 return 0;
}

Relativistic EM Two Stream Instability 2D BEPS Code

